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The Lattice-Boltzmann Method
Boltzmann Equation

The Boltzmann equation is an integro-differential equation for the probability
density function f (x, v, t) in six-dimensional space of a particle position x ∈ R3

and momentum v ∈ R3 given by

∂t f +∇xf · v + F

ρ
· ∇vf = Q(f , f ), (1)

where Q(f , f ) is collision integral, F is the body force, ρ is macroscopic mass
density of the system, and ∇x and ∇v are gradients with respect to the position
x and velocity v coordinates, respectively.

It can be shown that the collision integral Q(f , f ) has at least five invariants,
i.e., a set of functions ξk , k = 1, 2, 3, 4, 5, satisfying∫

ξk(v)Q(f , f )dv = 0, (2)

which are ξ1 = 1, (ξ2, ξ3, ξ4) = v and ξ5 = |v|2, with the integration being
performed in R3
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The Lattice-Boltzmann Method
Boltzmann Equation

It can be shown that the collision integral Q(f , f ) has at least five invariants,
i.e., a set of functions ξk , k = 1, 2, 3, 4, 5, satisfying∫

ξk(v)Q(f , f )dv = 0, (3)

which are ξ1 = 1, (ξ2, ξ3, ξ4) = v and ξ5 = |v|2, with the integration being
performed in R3.

A general collision invariant can be written as linear combinations of the functions
ξk . The invariants are associated to some important macroscopic quantities in
the system

mass density:

∫
fdv = ρ, (4)

momentum:

∫
f vdv = ρu, (5)

energy:
1

2

∫
f |v|2dv = ρE . (6)
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The Lattice-Boltzmann Method
Boltzmann Equation

A set of conservation laws for each of this quantities can be obtained mul-
tiplying the Boltzmann equation (1) by a collision invariant and subsequently
integrating with respect to the velocity. For example, for ξk = 1, we have

∂

∂t

(∫
fdv

)
+∇x ·

(∫
f vdv

)
+

F

ρ
·
(∫

∇vfdv

)
=

∫
Q(f , f )dv = 0 ⇒ (7)

⇒ ∂tρ+∇ · (ρu) = 0, (8)

obtaining to the continuity equation. Similarly, if we take first moment of the
Boltzmann equation we find

∂(ρu)

∂t
+∇ · Π = F, (9)

where Π is the momentum flux tensor given by

Π =

∫
f v ⊗ vdv. (10)
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The Lattice-Boltzmann Method
Boltzmann Equation

By splitting the particle velocity v = u+w, where w is the relative velocity,
we obtain

Π = ρu⊗ u+

∫
fw ⊗ wdv. (11)

Thus, the equation (9) becomes the Cauchy momentum equation

∂(ρu)

∂t
+∇ · (ρu⊗ u) = ∇ · P+ F. (12)

However, in this equation we do not know explicitly the stress tensor

P = −
∫

(w ⊗ w)fdv. (13)

We can approximate this stress tensor using an explicit approximation for the
distribution function f .
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The Lattice-Boltzmann Method
Boltzmann Equation

Boltzmann showed in 1872 that the entropy function,

H(t) =

∫
f (x, v, t) ln(f (x, v, t))dxdv, (14)

where f is any function satisfying the Boltzmann equation, fulfills the equation

dH

dt
≤ 0. (15)

The equality in (15) holds for a distribution f eq given by

f eq(ρ, u, v,T ) = ρ

(
1

2πRT

)3/2

e−|v−u|2/(2RT ), (16)

where T is the temperature and R is the ideal gas constant. This is the so-called
the local equilibrium distribution of the system. A direct calculation also shows
that Q(f eq, f eq) = 0.
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The Lattice-Boltzmann Method
Boltzmann Equation-BGK approximation

The collision operators commonly used in numerical methods for the Boltz-
mann equation are based on the Bhatnagar-Gross-Krook (BGK) collision op-
erator:

Ω(f , f ) = − 1

τ
(f − f eq), (17)

where τ is known as the relaxation time, which determines the speed of the
convergence to the equilibrium state of the system.

If we approximate f ≃ f eq, the equation (12) becomes the Euler momentum
equation

∂(ρu)

∂t
+∇ · (ρ(u⊗ u)) = ∇p + F, (18)

where p is the pressure given by

p =
1

3

∫
|w|2f eq(x, v, t)dv. (19)
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The Lattice-Boltzmann Method
Boltzmann Equation

A more general approximation for f , which accounts the non-equilibrium
effects, is obtained using the Chapman-Enskog analysis. It consists in the
expansion of f as a perturbation around f eq given by

f = f eq +
∞∑
k=1

εk f (k), (20)

where ε labels each term’s order and is often stated in the literature as propor-
tional to the Knudsen number Kn = ℓmfp/L of the system, defined as the ratio
between the mean free path ℓmfp and the representative physical length scale L.

Analogously, the operators ∂t and ∇x have to be defined such that they are
consistent with the conservation laws.
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The Lattice-Boltzmann Method
Boltzmann Equation

To the first order approximation f ≈ f eq+εf (1), we obtain the Navier-Stokes
equations with the following stress tensor

P ≃ −pI+
η

2
(∇u+∇uT ), (21)

from the equation (13), where η is the dynamic viscosity. Thus, from a solution
of the Boltzmann equation for a given system we can derive a solution for the
Navier-Stokes equations for the same case.
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The Lattice-Boltzmann Method
Boltzmann Equation

In the lattice Boltzmann method (LBM) the basic quantity is the discrete-
velocity distribution function fi (x , t), often called the particle populations, it
represents the density of particles with velocity ci at position x and time t.

By discretizing the Boltzmann equation in velocity space, physical space, and
time, we obtain the discrete Boltzmann equation

fi (x+ ci∆t, t +∆t) = fi (x, t) + Ωi (x, t). (22)

This equation expresses that a particle fi (x, t) moves with velocity ci to the
nearest neighbors after a time step ∆t.

D3Q27

y

z

x

Figure: Lattice velocities for D3Q27 scheme.
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The Lattice-Boltzmann Method
Boltzmann Equation

Analogously, the mass density and momentum ρu at (x , t) can be found through
weighted sums known as moments of fi as

ρ(x, t) =
∑
i

fi (x, t), (23)

ρu(x, t) =
∑
i

ci fi (x, t). (24)

The main difference between fi and the continuous distribution function f is
that all of the argument variables of fi are discrete, with the subscript i referring
to a finite discrete set of velocities ci .
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The Lattice-Boltzmann Method
Traditional lattice-Boltzmann equation

The discrete version of the BGK-collision operator is given by Ωi defined as

Ωi (f , f ) = − fi − f eqi

τ
. (25)

The equilibrium distribution is calculated by maximizing the entropy

S(ρ, u) = −
∑
i

f eq(ρ, u) ln

(
f eq(ρ, u)

wi

)
, (26)

for given constraints, which for case under consideration are the mass and
momentum densities given by (23) and (24), i.e.,∑

i

f eqi =
∑
i

fi = ρ, (27)

∑
i

ci f
eq
i =

∑
i

ci fi = ρu. (28)
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The Lattice-Boltzmann Method
Classical lattice-Boltzmann equation

We obtain as a minimum of S the following distribution:

f eqi (ρ, u) = ρwi

(
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

)
, (29)

where the weights wi are associated to the velocity set D2Q9.

Using the BGK approximation in the discrete Boltzmann equation, we obtain
the lattice BGK equation:

fi (x+ ci , t + 1) = fi (x, t)−
1

τ
(fi (x, t)− f eqi (ρ, u)) . (30)

The simplest way to initialize the populations at the initial time t = 0 is to set

fi (x, t = 0) = f eqi (ρ(x, t = 0), u(x, t = 0)). (31)
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The Lattice-Boltzmann Method
Traditional lattice-Boltzmann equation

Using Chapman-Enskog expansion the kinematic shear viscosity is associated
to the relaxation time by the equation

ν = c2s

(
τ − 1

2

)
δt, (32)

where cs = c/
√
3 is the speed of sound in l.b.u.. In addition, the momentum

flux tensor P is approximated from fi as

P ≃
(
1− 1

2τ

)∑
i

(ci ⊗ ci )fi (33)

analogously to the formula (13) in the continuum case. The viscous contribu-
tion σ to the momentum flux tensor is approximated as

σ ≃
(
1− δt

2τ

)∑
i

(ci ⊗ ci )(fi − f eqi ) = ρν(∇u+∇uT ). (34)

where ν is the kinematic viscosity.
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The Lattice-Boltzmann Method
Single-step algorithm

As a consequence of the Chapman-Enskog multiscale analysis, we obtain the
following final equations

N∑
i=1

[
∂f eqi

∂t
+ ci · ∇f eqi

]
= 0, (35)

N∑
i=1

ci

[
∂f eqi

∂t
+ ci · ∇f eqi +

(
1− 1

2τ

)
Df

(1)
i

]
= 0, (36)

with

N∑
i=1

f
(1)
i = 0 (37)

N∑
i=1

ci f
(1)
i = 0. (38)

The non-equilibrium term can be approximated as

f (1)(r, t) ≃ −τ [f eq(r , t)− f eq(r − ciδt, t − δt)]. (39)
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Single-step Lattice-Boltzmann Method
Continuity equation

From the first order of the Chapman-Enskog expansion

N∑
i=0

[
∂f eqi

∂t
+ ci · ∇f eqi

]
= 0, (40)

We approximate the RHS of the equation (40) by a forward finite difference
schemes

∂f eqi

∂t
=

f eqi (x, t + δt)− f eqi (x, t)

δt
, (41)

The second term of the LHS of the equation (40) is discretized using the the
following finite difference scheme

ci · ∇f eqi = − f eqi (x+ ciδt, t)− 4f eqi (x, t) + 3f eqi (x− ciδt, t)

2δx
(42)

By replacing the expressions derived in Equations (41) and (42) in Equation
(40), one obtains

N∑
i=1

f eqi (x, t + δt)− f eqi (x, t)

δt
+

f eqi (x, t)− f eqi (x− ciδt, t)

δx
= 0. (43)
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Single-step Lattice-Boltzmann Method

The equation (43) can be rewrite as:1.

ρ(x, t + δt) =
3

2

N∑
i=1

f eq(x− ciδt, t)−
N∑
i=1

f eqi (x, t) +
1

2

N∑
i=1

f eqi (x+ ciδt, t)

(44)

1Delgado-Gutiérrez, Arturo, et al. International Journal for Numerical Methods in Fluids 93.7
(2021): 2339-2361.
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Simplified Lattice-Boltzmann Method
Derivation of the momentum equation

The derivation for the momentum equation follows a similar treatment com-
pared to the derivation for the density.

N∑
i=1

ci

[
∂f eqi

∂t
+ ci · ∇f eqi +

(
1− 1

2τ

)
Df

(1)
i

]
= 0 (45)

By explicitly expressing Df
(1)
i as

Df
(1)
i =

∂f
(1)
i

∂t0
+ ci · ∇f

(1)
i , (46)

applying the directional approach for the gradient operation

N∑
i=1

ciDf
(1)
i =

N∑
i=1

ci
∂f (1)

∂c
. (47)

The term
∂f

(1)
i
∂t

can be expressed as

∂f
(1)
i

∂t
=

−τ [f eqi (x+ ciδt, t)− f eqi (x, t) + f eqi (x− ciδt, t)]

δx
. (48)
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Simplified Lattice-Boltzmann Method
Derivation of the momentum equation

The second term from Equation (45) can be also simplified by using a second
order central difference:

ci · ∇f eqi =
f eqi (x+ ciδt, t)− f eqi (x− ciδt, t)

2δx
. (49)

Combining all the finite differences proposed, we obtain the following ex-
pression for the computation of the macroscopic momentum:2.

m(x, t + δt) =
N∑
i=1

ci f
eq
i (x− ciδt, t) + (50)

+ (τ − 1)[f eqi (x+ ciδt, t)− 2f eqi (x, t) + f eqi (x− ciδt, t)].

where m(x, t + δt) = ρ(x, t + δt)u(x, t + δt).

2Delgado-Gutiérrez, Arturo, et al. International Journal for Numerical Methods in Fluids 93.7
(2021): 2339-2361.
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Simplified Lattice-Boltzmann Method
LBM algorithm for advection-diffusion equation

Now consider a general the advection- diffusion equation (ADE) for a scalar
field c:

∂c

∂t
+∇ · (cu) = ∇ · (D∇c) + q (51)

The left-hand side describes the advection of C in the presence of an external
fluid velocity u, while the right-hand side contains a diffusion term with diffusion
coefficient D and a possible source term q.

The ADE and the Navier-Stokes equation have similarities. It is possible
adapt the lattice Boltzmann method in order to solve general advection-diffusion
equations.
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Simplified Lattice-Boltzmann Method
LBM algorithm for advection-diffusion equation

It turns out that the LBE

gi (x+ ciδt, t + δt) = gi (x, t)−
1

τc
(gi (x, t)− g eq

i (x, t)) + Qi , (52)

and suitable source terms Qi solves the ADE for the concentration field c =∑N
i=1 gi . This collision operator results in a diffusion coefficient

D = c2s

(
τg − 1

2

)
δt. (53)

where τc is the respective relaxation time.

The equilibrium distribution typically assumes the form

g eq
i (c, u) = wic

(
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

)
. (54)
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Simplified Lattice-Boltzmann Method
Single-step algorithm for advection-diffusion equation

The lattice Boltzmann equation (LBE) can be written as

gi (x+ ciδt, t)− gi (x, t) =
g eq
i (x, t)− gi (x, t)

τc
, (55)

If we apply a Taylor series expansion at the left-hand side of (55) followed by
a Chapman–Enskog multiscale analysis, it is possible to write the following
equations ∑

i

[
∂g eq

i

∂t
+ ci · ∇g eq

i +

(
1− 1

2τc

)
Dig

(1)
i

]
= 0. (56)

where ∑
i

g
(1)
i = 0 (57)

∑
i

cig
(1)
i = 0. (58)
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Simplified Lattice-Boltzmann Method
Single-step algorithm for advection-diffusion equation

It is possible to write3.

∂g eq
ix

∂t0
= g eq

ix (x, t + δt)− g eq
ix (x, t)

ci · ∇g eq
ix =

g eq
ix (x+ ciδt, t)− g eq

ix (x− ciδt, t)

2δx∑
i

Dig
(1)
ix =

∑
i

∂g
(1)
ix

∂ci
≃

∑
i

g
(1)
ix (x+ ciδt, t)− g

(1)
ix (x, t)

δx
=

=
∑
i

−τc [g
eq
ix (x+ ciδt, t)− 2g eq

ix (x, t) + g eq
ix (x− ciδt, t)] .

Then, we get ∑
i

[
g
(0)
ix (x, t + δt) + 2(τc − 1)g

(0)
ix (x, t)−

−(τc − 1)g
(0)
ix (x+ ciδt, t)− τgg

(0)
ix (x− ciδt, t) = 0

]
. (59)

3De Rosis, Alessandro, Ruizhi Liu, and Alistair Revell. Physics of Fluids 33.8 (2021): 085114.
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Simplified Lattice-Boltzmann Method
Single-step algorithm for advection-diffusion equation

By noticing that∑
i

g eq
i (x, t + δt) = c(x, t + δt), (60)∑
i

g eq
i (x, t) = c(x, t), (61)

we end up with

c(x, t +∆t) =
N∑
i=1

g eq
i (x− ciδt, t) + (62)

+ (τc − 1)[g eq
i (x+ ciδt, t)− 2g eq

i (x, t) + g eq
i (x− ciδt, t)].
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Single-step Lattice-Boltzmann Method
Summary

Considering the following expression for the equilibrium distributions:

f eqi (ρ, u) = wiρ

(
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

)
, (63)

g eq
i (c, u) = wic

(
1 +

ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

)
. (64)

We have the following single-step LBM algorithm:

ρ(x, t + δt) =
N∑
i=1

3

2
f eq(x− ciδt, t)− f eqi (x, t) +

1

2
f eqi (x+ ciδt, t), (65)

m(x, t + δt) =
N∑
i=1

ci f
eq
i (x− ciδt, t) + (66)

+ (τ − 1)ci [f
eq
i (x+ ciδt, t)− 2f eqi (x, t) + f eqi (x− ciδt, t)],

c(x, t + δt) =
N∑
i=1

g eq
i (x− ciδt, t) + (67)

+ (τc − 1)[g eq
i (x+ ciδt, t)− 2g eq

i (x, t) + g eq
i (x− ciδt, t)].

where m(x, t + δt) = u(x, t + δt)ρ(x, t + δt).
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Simplified Lattice-Boltzmann Method
Single-step LBM-forcing term improvements

In the GZS forcing scheme, the forcing term accounting for the external
force F is written in a power series in the particle velocity

Fi =

(
1− 1

2τ

)
wi

[
(ci − u)

c2s
+

(ci · u)
c4s

ci

]
· Fext (68)

The algorithm for the velocity field is rewritten as

u(x, t + δt) =
N∑
i=1

{ci f eqi (x− ciδt, t)+ (69)

+ (τ − 1)ci [f
eq
i (x+ ciδt, t)− 2f eqi (x, t) + f eqi (x− ciδt, t)] +

+ −τδt

2
ci [Fi (x+ ciδt, t − δt)− Fi (x− ciδt, t − δt)]

}
+

+ Fext(x, t − δt)δt.

With this improvement, we can simulate with multiple forms of external force
interactions, including the space and time dependent body forces.
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Simplified lattice Boltzmann implementation of the quasi-static
approximation for pipe flows under the presence of non-uniform magnetic
fields

Figure: MHD pipe flow with a transversal magnetic field.

Simulation of MDH flows using simplified LBM models;

Improvements of recent LBM algorithms for regimes with Rem << 1;

Improved Immersed Boundary Method (IBM);

Simulations with uniform and non-uniform magnetic fields;

Simulations with unsteady flows.
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Magnetohydrodynamic (MHD) equations

Consider the following system:

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∇2u+ J× B, (70)

∇ · u = 0, (71)

∂tB+∇ · (u⊗ B− B⊗ u) = η∇2B, (72)

∇ · B = 0, (73)

where η is the (constant) magnetic resistivity of the fluid. The electric field E
and the the electric current density J are approximated by

E = −(u× B) + η(∇× B), J = ∇× B. (74)

Important dimensionless quantities:

Re =
UL

ν
, Rem =

UL

η
, Ha =

B0L√
ην

, Prm =
η

ν
. (75)

which are respectively: the Reynolds number, the magnetic Reynolds number,
the Hartmann number and the magnetic Prandtl number. U is the charac-
teristic velocity, B is the characteristic magnetic intensity and L is the typical
length.

by H.S. Tavares1, B. Magacho1, L. Moriconi1, J.B. Loureiro2 Some advances in the lattice Boltzmann method for flows in the presence of curved boundaries and non-uniform magnetic fields



MHD equations in the quasi-static (Q.S.) regime

In the regime of Rem << 1, it is convenient to introduce the decomposition
B = Bext + δB, where Bext is the external magnetic field and δB corresponds to
the fluctuations. The following system holds in this situation:

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∇2u+ J× B, (76)

∇ · u = 0, (77)

η∇2B = ∇ · (u⊗ Bext − Bext ⊗ u), (78)

∇ · B = 0, (79)

The simplification eliminates the problem of a very small magnetic
diffusion time scale in the regime Rem << 1;

But that brings up problems with the Poisson equation.

Some problems with traditional boundary conditions methods for LBM.
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Single-step Lattice-Boltzmann Method
Summary

Considering the following expressions for the equilibrium distributions:

f eqi (x, t) = wi

[
ρ+

(
ci · u
c2s

+
(ci · u)2

2c4s
− u · u

2c2s

)]
, (80)

g eq
ix (x, t) = wi

[
Bx +

ciy
c2s

(uyBx − uxBy ) +
ciz
c2s

(uzBx − uxBz))

]
, (81)

g eq
iy (x, t) = wi

[
By +

cix
c2s

(uxBy − uyBx) +
ciz
c2s

(uzBy − uyBz))

]
, (82)

g eq
iz (x, t) = wi

[
Bz +

cix
c2s

(uxBz − uzBx) +
ciy
c2s

(uyBz − uzBy ))

]
. (83)
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Single-step Lattice-Boltzmann Method
Summary

We have the following single-step LBM algorithm the for the hydrodynamic
variables:

ρ(x, t + δt) =
N∑
i=1

3

2
f eq(x− ciδt, t)− f eqi (x, t) +

1

2
f eqi (x+ ciδt, t), (84)

u(x, t + δt) =
N∑
i=1

ci f
eq
i (x− ciδt, t) + (85)

+ (τ − 1)ci [f
eq
i (x+ ciδt, t)− 2f eqi (x, t) + f eqi (x− ciδt, t)],

and for the magnetic field:

Bx(x, t +∆t) =
N∑
i=1

g eq
ix (x− ciδt, t) + (86)

+ (τm − 1)[g eq
ix (x+ ciδt, t)− 2g eq

ix (x, t) + g eq
ix (x− ciδt, t)],

with an analogous algorithm for the other components By and Bz .
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Boundary condition-enforced immersed boundary method

A fixed Eulerian mesh is applied in which the flow field is resolved, while
the immersed solid boundary is described by a set if discrete Lagrangian
points distributed in the fluid.

The flow variables resolved on Eulerian mesh are corrected by a restoration
force exerted from the solid boundary.

Figure: (a) Cylinder with boundary markers (in red) positioned in the fluid domain.
The Eulerian and the Lagrangian meshes are independent. (b) Schematic
representation of the typical immersed boundary considered for the MHD pipe flows.
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Boundary condition-enforced immersed boundary method

The introduction of the effects of the boundaries is introduced considering a
predictor-correction algorithm. In the predictor step, we solve the system

∂ρ

∂t
+∇ · (ρu) = 0 (87)

∂(ρu)

∂t
+∇ · (ρ(u⊗ u)) = −∇p +∇ ·

[
µ(∇u+∇uT ))

]
+ Fext . (88)

The effects of the boundaries are imposed as an extra forcing term introduced
in the corrector step:

∂(ρu)

∂t
= f, (89)

where f is determined by the IBMs to interpret boundary effects of the immersed
objects.
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Viscosity-independent immersed boundary corrections

The corrector step is discretized as

ρδu = fδt, (90)

where δu is the velocity correction. The velocity correction, considering the
necessary scaling corrections, is given by

δu = DT


. . . 0 0
0 λ

di (1+di (λ−1))
0

0 0
. . .

 (Ub −Du∗). (91)

where λ = ν2/ν1 is the viscosity ratio (ν1 = 1/6 is an optimal value for some
lattice Boltzmann models), Ub is the imposed boundary condition and u∗ is
the velocity obtained in the predictor-step. D is an interpolating matrix whose
coefficients are Lagrange polynomials and

di =
∑

j∈{Aij ̸=0}

Aij , i = 1, · · ·,N. (92)

where
Aij =

∑
k

D(xk − Xi )D(xk − Xj). (93)

where N is the number of the immersed boundary points and k are indices
corresponding to the Eulerian set of points.
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Viscosity-independent immersed boundary corrections

The flow solution can be described by a set of non-dimensional physical quanti-
ties, as the non-dimensional pressure and velocity

u∗ =
u

Ur
p∗ =

p − pr
ρrU2

r
, (94)

where Ur , pr and ρr are reference values for velocity, pressure and density, re-
spectively. In addition, a non-dimensional IB force is defined as

f∗ =
fD

ρrU2
r
. (95)

Consider two sets of dimensional quantities (ρ1, u1, f1) and (ρ2, u2, f2), which we
call systems 1 and 2 respectively. Let us also consider that the reference densities
and characteristic lengths are the same, i.e., ρ1 = ρ2 = ρr (small Mach numbers
assumption) and L1 = L2.
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Viscosity-independent immersed boundary corrections

The following scaling laws are verified

u1 =
1

λ
u2, f1 =

1

λ2
f2, (96)

where λ = ν2/ν1 with ν1 and ν2 being the viscosities. The IB forces can be

rewritten as

f1 = ρrδu2 = ρr (u1 − u∗
1 ), f2 = ρrδu2 = ρr (u2 − u∗

2 ), (97)

which leads to the the following equation

u∗
1 =

(
1

λ
− 1

λ2

)
u2 +

1

λ2
u∗
2 . (98)

This property leads to a numerical error in many explicit immersed boundary
methods.
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Gold’s solution

Figure: Schematic representation of MHD pipe flow with a transversal magnetic field.

The velocity and magnetic field distributions are given by the analytical solution
developed by Richard R. Gold4.

1Gold, Richard R. ”Magnetohydrodynamic pipe flow. Part 1.” Journal of Fluid Mechanics 13.4
(1962): 505-512.
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Gold’s solution

The Gold’s solutions for the streamwise components of velocity and magnetic
fields are given by

Ux(r , θ) = − R2

νHa

∂p

∂x

[
cosh (αr cos θ)

∞∑
n=0

εn
I
′
2n(α)

I2n(α)
I2n(αr) cos (2nθ)−

− sinh (αr cos θ)
∞∑
n=0

2
I
′
2n+1(α)

I2n+1(α)
I2n+1(αr) cos ((2n + 1)θ)

]
,

Bx(r , θ) = − 1
√
ην

R2

2Ha

∂p

∂x

[
∞∑

n=−∞

(exp (−αr cos θ) −

− (−1)n exp (αr cos θ))
I
′
n (α)

In(α)
In(αr) exp (inθ)− 2r cos θ

]
,

where α = Ha/2, ϵn equal 1 for n = 0 and 2 for n > 0. In is the modified Bessel
function of the first kind of order n and I ′n is the respective derivative.
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Viscosity-independent boundary condition-enforced IBM
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Figure: Simulation of MHD pipe flows under the presence of a transversal magnetic
field with viscosity ν = 0.004, resistivity η = 0.04 and Ha = 18. In these experiments,
we show the magnetic and velocity field profiles for a simulation with pipe radius

r = 35 and constant pressure difference ∂p
∂x

= −3.7× 10−5, and we compare with the
respective analytical solutions.
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Viscosity-independent boundary condition-enforced IBM

10 20 30 40 50 60 70
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Re = 512.279259

Gold solution for = /2
Gold solution for =0
Simplified LBM solution
Simplified LBM solution

10 20 30 40 50 60 70
-4

-3

-2

-1

0

1

2

3

4
10 -5 Ha = 18

Gold solution for =0
Simplified LBM solution

Figure: Comparison with the Gold’s solutions by using the single-step LBM algorithms
with viscosity ν = 0.004, resistivity η = 10000 and Hartman number Ha = 18 in a
pipe with radius r = 35. The algorithm for the magnetic field is iterated Nmag = 12
times before every update of the velocity field. The resulting magnetic Prandtl
number Prm = 4× 10−7.
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Viscosity-independent boundary condition-enforced IBM
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Figure: Comparison with the Gold’s solutions by using the single-step LBM algorithms
with viscosity ν = 0.004, resistivity η = 10000 and Hartman number Ha = 18 in a
pipe with radius r = 35. The algorithm for the magnetic field is iterated Nmag = 12
times before every update of the velocity field. The resulting magnetic Prandtl
number Prm = 4× 10−7.
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Energy budget analysis and unsteady flows

We analyse the evolution of magnetic energy Em =
〈
1
2
|B|2

〉
and the kinetic

energy Ek =
〈
1
2
ρ|u|2

〉
(per unit of volume) where ⟨·⟩ denotes spatial averages

within a cylinder with radius smaller than the radius of the pipe. Their variations
are obtained given by

dEm

dt
= η

〈
B · ∇2B

〉
− ⟨B · (∇ · (uB− Bu))⟩ , (99)

dEk

dt
= −⟨u · ∇p⟩+

〈
u ·

[
∇ ·

(
µ∇u+ µ∇uT

)]〉
+ ⟨u · (J× B)⟩ .

We also analyse the situation with unsteady flow by introducing a variable pres-
sure difference as follows

∂p

∂x
= −F0 cos

(
2πt

T

)
, (100)

where F0 is a value of reference and T is the period. In our applications we
choose T = 200.
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Energy budget analysis and unsteady flows
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Figure: Verification of the Gold solution by using the single-step LBM with viscosity
ν = 0.04, resistivity η = 10000 and Hartman number Ha = 18. The simulation is
starts from the zero velocity configuration and evolves until it reaches the stationary
regime.
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Energy budget analysis and unsteady flows

Figure: Simulation of the MHD flow in a circular pipe with radius r = 22, Ha = 18,
η = 2 and ν = 0.08 submitted to ∂p/∂x = −0.00024 cos(2πt/200). The algorithm for
the magnetic field performs 1/dt = N = 12 iterations before every time step of the
algorithm for the velocity field.
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Energy budget analysis and unsteady flows

Figure: Simulation of the MHD flow in a circular pipe with radius r = 22, Ha = 18,
η = 45 and ν = 0.08 submitted to ∂p/∂x = −0.00024 cos(2πt/200). The algorithm
for the magnetic field performs 1/dt = N = 270 iterations before every time step of
the algorithm for the velocity field.
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Energy budget analysis and unsteady flows

Figure: Simulation of the MHD flow in a circular pipe with radius r = 22, Ha = 18,
η = 1000 and ν = 0.08 submitted to ∂p/∂x = −0.00024 cos(2πt/200). The
algorithm for the magnetic field performs 1/dt = N = 270 iterations before every time
step of the algorithm for the velocity field.
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Non-uniform magnetic fields

Figure: Schematics of the pipe flow setup with a representation of the positions of the
six covering magnetic slabs.
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Non-uniform magnetic fields

Figure: (a) Magnetic field lines of one magnet generated by the field given by (107)
and (108) in the yz-plane, where the red and blue colors indicate the north and south
poles of the magnets, respectively. In (b), the magnetic field lines generated by a set
of six magnets with alternating poles forming an hexagonal structure

The analytical expression for the magnetic field of one magnet is given by:

Bx(x , y) = 2

[
tan−1

(
x − L

y

)
− tan−1

(
x + L

y

)]
, (101)

By (x , y) = log

(
(x + L)2 + y 2

(x − L)2 + y 2

)
. (102)
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Non-uniform magnetic fields

Figure: Project PRIMATE (Pipe Rig for the Investigation of Magnetic Fields). Project
in collaboration with Luca Moriconi, Bruno Magacho and Juliana B.R. Loureiro from
UFRJ.
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Non-uniform magnetic fields

Figure: Simulation of a MHD flows with the six magnets configuration in the
quasi-static regime with η = 1000, Ha = 20, ν = 0.04 and pipe radius r = 38.5. A

constant body force with ∂p
∂x

= −2.16× 10−5 is applied. The simulation is performed

until the stationary solution is obtained. In (a) and (b) we show some level curves for
the velocity and magnetic fields, respectively.
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Current research stage: non-uniform magnetic field

Figure: Simulation of a MHD flows with the six magnets configuration in the
quasi-static regime with η = 1000, Ha = 20, ν = 0.04 and pipe radius r = 38.5. A

constant body force with ∂p
∂x

= −2.16× 10−5 is applied. The simulation is performed

until the stationary solution is obtained. In (c) we show the verification of the energy
balance equations.
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Central-Moments and MRT for MHD flows in the quasi-static regime

The space-time evolution for the Central-Moments LBM are obtained ac-
cording to

fi (x+ ci , t + 1)− fi (x, t) = −ΩCM f neqi (x, t) (103)

where f ∗i are the post-collision VDFs. The CM-LBM can be summarized by

ΩCM = M−1N−1SNM, f neq = (fi − f eq,exti ) (104)

where N and N−1 are the velocity dependent matrices used to move from the
raw to the central moment space, and vice-versa. M and M−1 are commonly
defined as orthogonal matrices allowing us to move from the velocity space to
the to the raw moment space, and f eqi is the extended equilibrium state that
includes up to sixth order terms. S is the collision matrix.
For the magnetic field LBM, it follows the MRT according to

gi,α(x+ ci , t + 1)− gi,α(x, t) = −M−1SMgneq
i,α (x, t) (105)
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Boundary conditions for populations

For the velocity field distributions it is applied the Bouzidi’s technique, for the
vector valued distributions its proposed an extension from a LBM for advection-
diffusion boundary condition

g i,α(xf , t + 1) = 2(∆− 1)g̃ i,α(xf , t)−
(
(2∆− 1)2

2∆ + 1

)
g̃ i,α(xff , t) +

2

(
2∆− 1

2∆ + 1

)
g̃ i,α(xf , t) +

1

3

(
3− 2∆

2∆+ 1

)
Bα|wall

(106)

Figure: Layout of the regularly spaced lattices and curved wall boundary. Source: Yu
et all (2003).
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3D Orszag–Tang vortex

Figure: Absolute values of (a) vorticity and (b) current density. Both cases have
Re = 2000 and Rm = 200.

by H.S. Tavares1, B. Magacho1, L. Moriconi1, J.B. Loureiro2 Some advances in the lattice Boltzmann method for flows in the presence of curved boundaries and non-uniform magnetic fields



3D Orszag–Tang vortex

Figure: A closer look at the time evolution of the magnetic energy for various Rm .
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Final remarks

We provide a set of extensions and improvements in a class of simplified
LBM algorithms with the objective of simulating MHD flows with very
small magnetic Reynolds numbers in pipe flows;

We also introduce an immersed boundary method which is able to
accurately include the effects curved insulating walls in the MHD
equations and whose accuracy is not significantly dependent on the
values of the relaxation times;

Improvements in the implementation of forcing term allows an accurate
and stable inclusion of variable forcing terms, showing good results
even in the presence of strongly non-uniform magnetic fields;

We provide a completely local and explicit LBM framework for
simulations of the quasi-static approximation in pipe flows, with a good
potential for simulations involving more complex geometries.
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